Learning natural language morphology from a raw text

Jackson Lee (Graduate student in linguistics)
John Goldsmith (Faculty advisor)
Simon Jacobs (Consultant at RCC)
{jsllee, goldsmith, sdjacobs}@uchicago.edu

Goal

Develop an unsupervised, language-independent system that takes:

Input – raw text

The Fulton County Grand Jury said Friday an investigation of Atlanta’s...

...and generates:

Output – morphological paradigms

talk talked talking talks etc.

move moved moving moves etc.

Resources

Data

- Brown corpus (1 million words)
- Google n-gram corpus (from Google Books, 4 billion words)

RCC

- storage, memory, cluster computing
- data visualization

Approach

From word trigrams to word contexts

⇒ **word context visualization**

Computing word similarity

⇒ **word manifolds**

Inducing paradigm tables

⇒ **word manifolds with paradigms**

Word context visualization

From trigrams:

(e.g., going)

was going after going to allow was not going etc.

To...

Context words at multiple positions:

Word manifolds

A graph-theoretic approach to computing distributional similarities among words (Goldsmith & Wang 2012)

English 1,000-word network:

Word manifolds with paradigms

Linguistica (Goldsmith 2001): Inducing stems + affixes

<table>
<thead>
<tr>
<th>stems</th>
<th>affix pattern</th>
</tr>
</thead>
<tbody>
<tr>
<td>jump, walk, ...</td>
<td>Õ-ed-ing-s</td>
</tr>
<tr>
<td>lov, mov, ...</td>
<td>e-ed-es-ing</td>
</tr>
</tbody>
</table>

But no alignment across affix patterns

Solution: Combine *Linguistica* and word manifolds

The match between Õ-ed-ing-s and e-ed-ing-es

affix pattern 1: Õ ed ing s (darker)
affix pattern 2: e ed ing es (lighter)