Mean-variance Optimization for Equity Portfolio Selection

Neil Benedict¹, Justin Brewer¹, & Ayham Haddad¹

1. MS in Analytics (MScA) Class of 2015, Graham School of Continuing and Professional Studies, University of Chicago, Chicago, IL

Introduction

- Banks, financial institutions, investment funds, and other institutions are tasked with developing and managing a portfolio of investment vehicles to grow the value of the portfolio while managing risk and ideally “beating the market.”
- Selecting investment vehicles to be held in a portfolio of investments is commonly referred to as portfolio management, and the portfolio of investments is typically referred to as the portfolio.
- The focus of this project was on applying mean-variance optimization for building a portfolio of equity securities.
- Due to the increasing availability of large-scale, high-dimensional datasets it is important to be able to leverage tools like R to optimize stock selection.

Problem Statement

The goal is to find the Efficient Frontier

- A set of optimal portfolios that offers the highest expected return for a defined level of risk or the lowest risk for a given level of expected return.
- Alternative investments

Variables and Scope

Sharpe Ratio vs Sortino Ratio

Independent Variables:
- Daily lag returns for 1,776 mid and large cap stocks from the NYSE and the NASDAQ, from 2000-2011 (in-sample) and 2012-2014 (out-of-sample).

Dependent Variables:
- Weights for the securities to be held in the investment portfolio.

Variables and Scope (Stock Preference Example)

Methodology

- Output stocks and weights for portfolio selection.

Findings

- Overall performance of the model portfolio was very strong compared to the benchmark. Mean-variance optimization, used on large time series datasets, can be an effective portfolio selection and research tool.
- The constraints set were conservative in that the model was not allowed to weight any one stock greater than 5% resulting in 23 stocks from a variety of industries, effectively hedging against unique risk. However, a major limitation of mean-variance optimization is the lack of fundamental analysis on the stocks selected for the portfolio.
- The model portfolio is comparable to a long-term growth equity fund. However, without fundamental analysis including balance sheets, P/E ratio, and other metrics there could be stocks selected for companies that do not have true long-term growth potential (aggressive short-term growth stocks).
- The model should be used as a supplementary tool for narrowing down stocks on which to perform fundamental analyses, and a slimming model, to determine the optimal portfolio rebalancing time, should be developed for use in conjunction with the portfolio selection model.

Conclusions and Recommendations

1. MS in Analytics (MScA) Class of 2015, Graham School of Continuing and Professional Studies, University of Chicago, Chicago, IL

Findings

Model Portfolios, S&P 500 (Benchmark)

<table>
<thead>
<tr>
<th>Year</th>
<th>Model Portfolio</th>
<th>S&P 500</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006</td>
<td>76.55%</td>
<td>13.62%</td>
</tr>
<tr>
<td>2007</td>
<td>56.78%</td>
<td>3.55%</td>
</tr>
<tr>
<td>2008</td>
<td>-22.14%</td>
<td>-31.49%</td>
</tr>
<tr>
<td>2009</td>
<td>97.07%</td>
<td>23.45%</td>
</tr>
<tr>
<td>2010</td>
<td>44.22%</td>
<td>12.70%</td>
</tr>
<tr>
<td>2011</td>
<td>28.39%</td>
<td>0.00%</td>
</tr>
</tbody>
</table>

In-Sample

- Out-of-Sample

- Almost 49% in Technology Industry
- 13% in Pharmaceuticals

In-Sample

- MARKET CAPITALIZATION
- INDUSTRY CONCENTRATIONS

- Large Cap: companies with a market capitalization value of more than $20 billion
- Mid Cap: companies with a market capitalization value between $2 and $10 billion

- S = \left(\frac{R_p - R_f}{\sigma_p} \right) (Desired Target Return)

- Risk = TDD, Target Downside Deviation

- Standard deviation of returns + T

- Lower tail

- According to Dr. Frank Sortino

- Investors are only interested in risk of returns that fall below a required rate

- R_p = \text{Target Rate}
- R_f = \text{Risk-free Rate, but analogous}
- 1 Year Treasury from Federal Reserve Bank of New York (prime overdue)
- Risk = TDD, Target Downside Deviation
- Standard deviation of returns + T
- Lower tail